## **PID-C** High-bandwidth PID controller



## Aero

## **PID-C** High-bandwidth PID Controller

AeroDIODE PID-C is a high speed PID controller that produces a control signal that dynamically minimize the difference between a given system signal and its desired setpoint. It is an ideal tool for applications requiring a high bandwidth PID correction such as laser locking or laser linewidth narrowing.



PID-C is an ultra-low noise easy-to-use standalone turnkey solution for high speed PID control. It is possible to monitor the input and output voltage signals with two addition SMA connectors.

PID-C has been designed to offer the lowest voltage noise over a wide PID control bandwidth. It provides proportional, simple integrator and double integrator functions in an easy-to-use touchscreen controlled (computer free) setup. It includes two additional SMA outputs to monitor the input and output signals and quickly understand your system.



Rear view of the product. The small form factor takes a surface as small as 155\*150 mm<sup>2</sup> on a test bench or an optical table.





- High control bandwidth >30 MHz
- Immediate start
- 3 PID functions : proportional, simple Integrator, and double Integrator
- Adjustable output offset
- 2 additional SMA outputs to monitor both the input and output signals
- 256 proportional gain, 16 simple integrator and 16 double integrator setting levels
- Short loop delay
- Ultra low voltage noise density

AeroDODE

• Ideal Bode diagram reaching >200 dB gain



The product has an easy-to-use touch screen with immediate overview of all parameters.



Input noise deduced from output noise (Gain=23dB) reaching less than  $5nV/\sqrt{Hz}$  in the 10kHz- 1MHz Fourrier Frequency range







Example of a typical Bode diagram of the module. The Gain reaches >200 dB and the bandwidth is exceptionally high up to 30 MHz.

www.aerodiode.com

## **Technical specifications**

| Model                       | PID-C                       | Notes :                            |
|-----------------------------|-----------------------------|------------------------------------|
| Input                       | ±5V - 50Ω                   | SMA connector                      |
| Output                      | ±4.5V - 50Ω                 | SMA connector                      |
| Control Bandwidth           | > 30 MHz                    |                                    |
| Output offset               | Yes; ±2V                    |                                    |
| Monintoring                 | 2                           | Input and output signals ; SMA/SMA |
| Proportional Gain           | -28 dB to 23dB              | 0.2dB increment                    |
| Simple integrator           | 0.1kHz to 10MHz             | 16 values                          |
| Double integrator           | 1Hz to 1MHz                 | 16 values                          |
| Open loop gain              | >200 dB                     |                                    |
| Loop delay                  | 24 ns                       | Typical (measured value)           |
| Input voltage noise density | < 5 nV/√Hz                  | 10kHz-1MHz (typ. measured value)   |
| Operating temperature       | +10 +40 °C                  |                                    |
| Power supply                | Yes - 9V/36W                | 110V/220V compatible               |
| Dimensions                  | 155*150*112 mm <sup>3</sup> | Pure aluminum case                 |
| Weight                      | 1.5 kg                      |                                    |

PTD - C has been created by researchers for researchers who want to focus on their work without wasting time with overly sophisticated instruments : the use is immediate and the performances exceptional.